

Arrange the metals in order of their reactivity							
Potassium Sodium Lithium	K Na Li	K Na Li					
Calcium Magnesium	Ca Mg	Ca Mg					
Aluminium Zinc Iron	AI Zn Fe	Zn Fe					
Nickle Tin	Ni Sn	Ni Sn Pb					
Lead Copper Mercury	РБ Cu Hg	H Cu					
Silver Gold Platinum	Ag Au Pt	Hg Ag Au					

Reactivity Series		
Potassium (Pretty)	Lead (Lovely)	
Sodium (Sally)	Hydrogen (Honolulu	Mg
Lithium (Little)	Copper (Causing)	AĬ
Calcium (Could)	Mercury (Many)	Zn Fe
Magnesium (Marry)	Silver (Strange)	Ni
Aluminium (A)	Gold (Glances)	Sn
Zinc (Zulu)	. ,	H
Iron (In)		Cu
**		

Reactivity Series

The Reactivity Series puts the <u>metals</u> in order of <u>reactivity</u>. The highly reactive metals react with cold water, giving off <u>Hydrogen</u> gas and leaving an<u>alkaline</u> solution. Metals of medium reactivity only react very <u>slowly</u> with cold water, but they react very <u>slowly</u> with cold water, but they react well with <u>steam</u>. These metals fizz with dilute <u>acid</u> giving off <u>Hydrogen</u> gas. Metals of low reactivity, such as<u>Copper</u>, silver, <u>Gold</u> and platinum do not react with water or dilute <u>acid</u>. A more reactive metal can <u>displace</u> a less reactive metal from its compounds.

Lab involving reacting substance on							
top and sides							
		Mg	Cu	Zn			
	Ag۸	Mg + AgNO₃ [✓] →	Cu + AgNO₃ ^I	Zn + AgNO₃ [™] →			
	õ	Ag+ Mg(NO ₃) ₂	Ag+ Cu(NO ₃) ₂	Ag+ Zn(NO ₃) ₂			
H ₂ SU ₄	H ₂ S	Mg + H ₂ SO ₄ [™]	NR	Zn + H₂SO₄ ^I			
	ŏ	$H_2 + MgSO_4$		$H_2 + ZnSO_4$			
1 010	Fe(N	Mg+ Fe(NO ₃) ₃	NR	Zn+Fe(NO ₃) ₃			
	ю _{з)з}	Fe+ Mg(NO ₃) ₂		$Fe+Zn(NO_3)_2$			
	Cu	Mg + CuCl₂ ✓	NR	Zn + CuCl₂ ⊻			
	<u>O</u> 2	Cu + MgCl ₂		$Cu + ZnCl_2$			

- What acid would you react with Magnesium to form Magnesium Sulphate?
 Sulphuric Acid
- What chemical would you react with nitric acid to form Zinc nitrate, Carbon dioxide and Water?
 Zinc Carbonate
- What salt would form if Aluminium hydroxide was
 reacted with Nitric acid?
 •Aluminium nitrate

